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Multimode Network Description of a
Planar Periodic Metal-Strip Grating
at a Dielectric Interface—Part I:
Rigorous Network Formulations

MARCO GUGLIELMI anp ARTHUR A. OLINER, LIFE FELLOW, IEEE

Abstract —In Part 1 of this set of two papers, the problem of a plane
wave incident at an arbitrary angle on a metal-strip grating of arbitrary
period located at an air-dielectric interface is formulated rigorously in
terms of a pair of “static” integral equations, from which new equivalent
multimode network descriptions are derived. Both aperture and obstacle’
approaches are treated, and both TE and TM polarizations are considered
explicitly. In Part II we present two approximate, but very simple and
accurate, analytical solutions of the relevant integral equations, which in
turn lead to simple and useful multimode network descriptions of the
discontinuity. Several numerical comparisons are also presented between
the results obtained using these new simple networks and those from an
independent numerical reference solution. Excellent agreement is found
over a fairly large range of parameter values.

I. INTRODUCTION

NE OF THE problems in electromagnetic scattering

that has always attracted much attention is the scat-
tering of waves by various types of transmission gratings.
Starting with the work of Lord Rayleigh [1] and continuing
up to the present time, continual efforts have been made to
improve the understanding of this phenomenon. Within
this context, the objective of this paper is to present a set
of new multimode equivalent network representations for
the scattering by a transmission grating composed of a
zero-thickness, periodic metal-strip grating at a plane di-
electric interface of the type shown in Fig. 1.

For this scattering problem, rigorous solutions are avail-
able only for a self-reciprocal and symmetric structure
[21-[4] (a/p =1/2 and €® =¢? in Fig. 1). Other asymp-
totically rigorous or approximate analyses [5]—[15] can also
be found, and some of the solutions do provide very
accurate numerical results. The equivalent network repre-
sentations that are available in the literature are far more
limited, however. When the grating is opetated under
single-mode conditions, i.e., there is present only one re-
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Fig. 1. The structure under examination is a zero-thickness metal-strip
grating placed at a plane air—diclectric interface. The excitation is a
plane wave incident at an angle; both TE and TM polarizations are
considered. The ratio between the period p and the wavelength A, of
the incident plane wave is such that higher propagating modes (or
spectral orders) must be considered.

flected wave and only one transmitted wave, the solution
for the equivalent network in the Waveguide Handbook
[16] is valid for arbitrary incidence angle but only when
the same medium is present on both sides of the grating.
When the grating is placed at an air-dielectric interface,
equivalent network results are presented [17], [18] for the
special case of normal incidence only, and under single-
mode conditions. In these two papers [17], [18], compar-
isons are made with other solutions, and some errors in the
literature are identified. An equivalent network is also
available [19] in a restricted multimode case, when only
one higher mode is propagating, meaning that only a single
diffracted wave (or higher spectral order) is present on
each side in addition to the basic reflected and transmitted
waves. That solution is valid, furthermore, only when the
same medium is present on both sides; in addition, it is
given for TM incidence only, and only for the small-aper-
ture range (small spacing between grating strips).

In the present pair of papers we first present new
equivalent network representations of the metal-strip grat-
ing that can accommodate at the same time a different
medium on each side of the grating, arbitrary values of the
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d
Fig. 2. The original motivation for this work is the study of a class of

leaky-wave antennas for which the discontinuity in Fig. 1 is a key
constituent. (The grating is here rotated through 90°.)

relative aperture size, arbitrary angles of incidence, and an
arbitrary number of higher modes. In this context, we
derive integral equations and new rigorous multimode
network formulations that satisfy all these requirements.
“In Part II, we derive explicit small-argument solutions to
these integral equations which are in a particularly simple
analytical form, and we_also obtain correspondingly sim-
plified equivalent networks.

The principal advantage associated with the use of
equivalent network representations is that such a descrip-
tion of the grating can then be employed as a constituent
part of a variety of more complex structures, thereby
permitting greater insight into the performance properties
and simplifying the eventual design. Our original motiva-
tion was the study of a particular class of leaky-wave
antennas (see Fig. 2) in which the grating on an air—dielec-
tric interface is seen to serve as a key structural con-
stituent.

In the following sections we present solutions that are
analytical and in network form which are obtained by
analyzing the discontinuity in Fig. 1. The presentation has
been divided, for the sake of clarity, into two parts. Part I
(this paper) is concerned with the mathematical formula-
tion of the problem for aperture and obstacle phrasings,
and for both TE and TM excitations, together with the
new formal multimode network representations of the
solutions. In Part II we derive small-obstacle and small-
aperture solutions for the relevant integral equations that
provide very simple and accurate network descriptions of
the discontinuity. In the final section of Part II, we also
present several numerical comparisons between the results
obtained by using the networks developed and those from
an independent numerical reference solution, showing the
accuracy and flexibility of these equivalent network de-
scriptions.

In Section II of this paper, we begin by laying some
foundations relating to our unit cell approach and to the
use of static characteristic impedances, which permit us to
employ simplified kernels in the resulting rigorous integral
equations and to obtain useful equivalent network repre-
sentations for the discontinuity. Two alternative ap-
proaches, an aperture approach and an obstacle approach,
are possible in the derivation of integral equations that
characterize the discontinuity, and the formulations corre-
sponding to these approaches are presented in Sections III
and IV, respectively. It is to be noted that the equivalent
networks developed from these formulations are somewhat
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Following the unit cell viewpoint, the structure in Fig, 1 can be
decomposed into an infinite number cf “aperture” unt cells.

Fig. 3.
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Fig. 4. An alternative decomposition is the “obstacle” unit cell, ob-
tained by placing the origin of the coordinate system at the center of an
obstacle rather than an aperture.

different from each other. Application to either TE or TM
excitation follows directly upon the insertion of the appro-
priate expression for the modal characteristic impedance.
Explicit expressions for each of the four cases, combining
aperture or obstacle formulations with TE or TM excita-
tion, are presented in Section V. It is also shown there that
of these four cases only two different types of integral
equation result; they are both Fredholm integral equations
of the first kind with singular kernels, but the kernels in
each are different. In Part II, explicit analytical “small-
argument” solutions are derived for each of these two
integral equations; they lead to very simple and accurate
network descriptions that are valid over a reasonably wide
range of parameter values.

II. BACKGROUND: THE UNIT CELL APPROACH AND
THE STATIC IMPEDANCE

The first step toward the solution of the scattering
problem posed by a plane wave incident from the left on
the structure in Fig. 1 is the recognition that due to its
periodicity and infinite extent the grating can be decom-
posed into an infinite sequence of identical unit cells. Two
such unit cells are of particular interest: one obtained by
placing the origin of the coordinate system at the center of
an aperture and the other at the center of an obstacle, as in
Figs. 3 and 4.

Following this viewpoint, we effectively reduce the open
scattering problem to a waveguide problem. In fact, the
unit cell itself is equivalent to a waveguide where the walls
are phase-shift walls whose properties depend on the angle
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of incidence of the incident plane wave. The advantages of
this viewpoint are that we can now use a modal decompo-
sition of the fields and that the results obtained from the
analysis will be naturally compatible with a network de-
scription of the phenomenon. A detailed derivation of the
vector mode functions e, (z) and h,(z) can be found in
[19], but a short summary is included here in the Appendix
for clarity.

Now that we have available a complete set of mode
functions, we can decompose the total transverse field
components in the form

Eno)= £ hel) 0
B(o)= X LORG. O

In addition to the modal decompositions in (1) and (2),
another important concept that we employ later is that of
static characteristic impedance. Depending on which polar-
ization we employ, from now on we will use the following
definitions: for TM modes,

1 weel™ wee™p
=Ym = —— =4 j—/————, n#0
Zm = T limy ke
(3)
and for TE modes,
1 wpopl™ wop o™
Zm = - T . L
CY lim, Lok 27|n|
(4)

where the subscript s stands for “static” and the positive
sign is a direct consequence of the time dependence
exp| jwt] chosen and suppressed. The superscript (m) sig-
nifies either region (1) or (2) in Fig. 1, and in (3) and (4)
we recognize that

) = kel — k2,

P

k, ,=k,o+2nm/p

consistent with (A5) and (Al1) of the Appendix.

As a consequence of the above definitions, we are now
ready to introduce two separate formulations: one for the
aperture approach and another for the obstacle approach.
The distinction between TE and TM excitation is made
later via the substitution of the proper expression for the
static characteristic impedance or admittance.

III. APERTURE FORMULATION

Using the field decomposition in (2) and imposing the
continuity of the total transverse magnetic field at the
aperture in Fig. 3, we have

+ o0

Y LP(0)k,(2)-

n=—0o0

Y 190)h(z)=0 (5)

n=—
where I{™ is the total modal current, and the superscripts

(1) and (2) refer to x < 0 and x > 0, respectively. Note that
since (5) represents the continuity of the total transverse
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Fig. 5. Following the aperture formulation, the solution to the scatter-
ng problem posed by the structure in Fig. 1 can be phrased in terms of
an equivalent shunt network coupling all of the higher modes excited
by the grating.

magnetic field, it also contains the exciting plane wave, as
a part of the n=0 component of the first summation.
Therefore, no explicit reference needs to be made with
respect to the excitation.

From (5) we will now develop a rigorous integral equa-
tion whose kernel consists of a sum of static, rather than
dynamic, modes. This procedure facilitates the solution of
the integral equation and also leads to a very simple and
useful network formulation.

Following the development in the Waveguide Handbook
[20], a key step toward the formulation of such a “static”
integral equation is to add the terms

Y V(Y0 +v2)h,(2)

n,s n,s
n#+0

(6)

to both sides of (5), obtaining

+ o0

Y (I0-12)h,(2)+ X V(YR +12)h,(2)

n=-—o00 n#+0

= L v(rR+xQ)n,(z) (7)

n+0

where the static characteristic admittance terms are de-
fined in (3) and (4). The left-hand side of (7) suggests the
very useful current redefinition

(180~ 1)
(1= 12)+ V(Y0 +¥13)

— forn=20
I,=
forn+0

which leads to the equivalent network interpretation shown
in Fig. 5, where the modal voltages V,, are given by

+ o0 o
sz Z Ian,n'

n=—0o0

(9)

The above analytical expressions are equivalent to those
developed in the Waveguide Handbook [20], but the net-
work representation for them presented in Fig. 5 is new,
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and, as we shall see, is very useful and practical in its
reduced form given in Part IL
It is now appropriate to recall the transform relation
between the voltage ¥, of the mth mode and the electric
field E in the aperture, namely,
V,,,:/ (xoX E)-h%(2) dz’ (10)
ap
where the star means complex conjugate. Next, we substi-

tute (10) into (7) taking (8) into account and obtaining,
after a simple manipulation,

E Th(:) = [ (xoxE)

n=—oo

Y (E0, YO () kA () dz'.

m#0

(11)

Equation (11) is the fundamental integral equation we are
seeking; note that the kernel is simplified, because it
consists of a sum of static terms, but that the “incident”
excitation is now more complicated.

Due to the linearity of the problem, however, a more
useful equation can be obtained by expanding the un-
known aperture magnetic current x, X E(z’) into a sum of
partial magnetic currents M, (z"), defined by

Y TM(2)

= —00

(xo X E(27)) = 4o(2)

(12)

where A,(z’) is an appropriate vector function to be
defined later. Substituting (12) into (11) and comparing
like coefficients of I,, we finally obtain the following set of
partial integral equations:

ho(2) = [ M.()4o(2)

- L (2 +Y D)

m#0

m(2)h3(2) &z’ (13)
where n=0,+1,+2,---.

It is important to note that, although (13) has a kernel
composed of static terms, it indeed represents a rigorous
formulation of the problem under investigation.

To conclude the network phrasing of the problem, let us
now substitute (12) into (10) and obtain, after inverting the
order of summation and integration,

+ oo
v, = IfM 2)Ay(2')-hE(2) dz’.

m
n=—oo

(14)
Comparing (14) with (9), we finally obtain

= [ M A() b5 (13)

where Z,, , is the generic element of the impedance matrix
description introduced earlier (see Fig. 5 and (9)). Equa-
tion (15), together with (13) and the network in Fig. 5,
constitutes the formal solution of the aperture phrasing of
the scattering problem under investigation.

- n=—00
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IV. OBSTACLE FORMULATION

To phrase the problem in terms of the obstacle rather
than the aperture, we start by imposing the condition that
the tangential electric field components vanish on both
sides of the obstacle in Fig. 4. We thus obtain

+ 00

EV=0= ) Ve, (z) forx=0"  (16)
n=—00
+ o0

EP=0= Y V@e/(z) forx=0%. (17)

Then, using the static characteristic impedance previously
defined in (3) and (4), we add to both sides of (16) and
(17), respectively, the terms

2 ZP Ve, (z) (18)
n+0
~ X Z2 1P, (2) (19)
n#®0
obtaining
+ o0
Y Ve (2)+ X ZUIVe,(2) = X Z0IPe,(2)
n= =00 n+0 n+0
(20)
+ 00
Y Ve, (z)— X ZP1Pe,(2)
n=-—o0 n+0

— 2 2
- X Z81%
n+*0

(2).

To proceed in setting up the relevant integral equation, let
us now multiply (20) and (21) by C® and C®, respec-

r

tively, where the constant C(™ is defined as follows:

(1)

e(m for TM modes

cm={ 1 (22)
o for TE modes.
p

The subscript r in (22) stands for “relative,” and m =1 or
2 for x <0 or x>0, respectively. Adding the resulting
expressions, we obtain

+ o0

Y v(CO+CP)en(2)+ T G

IP)e,(z)
n#+0

= X G(I"-1P)e,(2) (23)

n#0

(I(l)

where we have taken into account the fact that the discon-

tinuity is purely transverse, so that
==, (24)

and the coefficient G, is defined according to

27|n|
- - for TM modes
G =COz0 = cozo = | /9P
n r n,s r n,s ~w D
JekoD for TE modes.
27|n|
(25)
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Fig. 6. An alternative approach is the obstacle formulation that leads to
a network description of the scattering problem that can be viewed as
the “dual” of the one shown in Fig. 5.

Finally, multiplying (23) by 1/(C* + C?) we obtain the
useful expression

+ o0
@ _y@
nziooV"e +,EOC‘1>+C<2)(I 1) e(z)
— 1 _ 7@
ngo C(1)+C(2)(I I®)e,(z). (26)

In a fashion similar to what we did for the aperture case,
let us now redefine voltages and currents according to

I=I®—I®  n=0,41,+2, - (27)
v forn=0

v, = 28

" V+IW forn+#0 ( )

and note that the above definitions lead to the network
description of the discontinuity shown in Fig. 6, where the
currents I, are given by

© —
m E VnYm,n

n=—00

(29)

To proceed, let us employ the well-known transform
. relation between the current /,, of the mth mode and a
magnetic field H
L= [(=xx H)-ex(z) dz’ (30)
D
where the domain D is the cross section of the unit cell,

and then substitute (30) into (26), using the definitions
introduced in (27) and (28). We then find

Z Ve (z)= —xOX(Hta)—H,(z))]

ne=—00 obstacle

T atamealen @ (Y

m+#0
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where we have taken into account the continuity of the
transverse magnetic field in the aperture. Remembering
again that linearity holds, it is now appropriate to intro-
duce the function N, (z’) according to

_B() %

n=—0o0

—xox(HO - HP) V,N(z) (32)

where the vector function B; is a suitable function to be
defined at a later stage. Substituting (32) into (31) and
comparing like coefficients of V,, we finally deduce the
following set of partial integral equations:

e(z)=[  N()B(2)

obstacle

G,
Z CO1Co° e (z)ef(z)dz" (33)

where n=0, +1, £2,---. Note that, as with (13), (33) has
a static kernel and at the same time represents a rigorous
formulation of the problem under investigation.

To complete the network phrasing of the problem, let us
combine (32) and (30) to determine 7, as

f N (z')By(z')-ex(z') dz.

obstacle

(34)

n=—-w

Finally, comparing (34) with (29) we have

Vo= [ NA2)By(2)-e5(2) d

obstacle

(35)
where Y, is the generic element of the admittance matrix
description introduced earlier in Fig. 6 together with (29).
Equation (35), together with equation (33) and the network
in Fig. 6, constitutes the formal solution of the obstacle

formulation of the original scattering problem.

V. Expricit ExpPreSSIONS FOR TE AND TM
INCIDENT WAVES

Let us first summarize the general basic equations de-
rived in the previous sections. For the aperture formulation,
the partial integral equation that must be solved for the
partial aperture magnetic current M, is given by (13), and
the expression for the impedance matrix element Zm "
terms of M, by (15). The only other elements in the
equivalent network formulation shown in Fig. 5 are the
static characteristic admittances that are defined in (3)
and (4).

In the obstacle formulation, the partial integral equation
for quantity N, appears as (33), and the expression for the
admittance matrix element Y, , in terms of N, is given by
(35). The other elements in the equivalent network formu-
lation shown in Fig, 6 are defined in (22) and (25).

To obtain explicit expressions for TE and TM incident
polarizations, we must utilize relations (3) and (4) for the
static characteristic impedances and expressions (A9) and
(A10) for the vector mode functions from the Appendix
and substitute them into the equations mentioned above.
Four specific cases are possible, combining aperture or
obstacle formulations with TM or TE excitation.
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Case 1: TM Excitation and Aperture Formulation
—/@na/p)z ’
e - Mn ( z )
ap

e J@mu/p)z—2')

wepp
DM €D+ dz’
me0 27 ( ) |m|
(36)
Z,0= [ M,(2)es@m/D% g (37)
ap
— pelka0?
Ay() 2 . (38)

Vr

Case 2: TM Excitation and Obstacle Formulation
e ~J2nm/p)z =/ N (z')
ob "

2 1

Sy T nle@m/pXa—2) gy
; 1 5 |mle z
o jwegp €D +e?P

(39)

Y,u= [ No(2)el@mn/o% gy’ (40)
ob
B(2) 2 (41)
z —_— =
° Vr

Case 3: TE Excitation and Aperture Formulation
27 ( 1 1
m+0 J Wop @

e @nm/p)z / M,(z') —+
ap My vy
- |m|eICmm/PXz=2) fpr

~——

(42)

(43)

Zpu= [ M(2)es0m/D !
ap

z ejkz,oz'
Ay L =1.

3

Case 4: TE FExcitation and Obstacle Formulation

(44)

esenm/p— [ N, (2)
ob "
Jopop 1 e /Cmam/p)z—2z')
o> dr 1 1
_+__
b ®

dz’

m#+0 lml

(45)

Y= [ N(2)esCmo/p)? g/ (46)
m,n ob n

k. oz’
yoej 2,0
By(z) —=—=1.
Vr
In conclusion, the original scattering problem has been
reduced to the solution of two partial integral equations of

(47)
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the types
=j(2mu/p)(z—z")
e /nT/p)z /”/2 FO(2)BO ¥ ¢ s
n
~b/2 m=0 |m|
(48)
e—j(2n'n'/p)z — /‘b/Z fn(Z)(Z/)B(Z) Z !mle—j(me/p)(z—z’) dZ/.
—b/2 m#0
(49)

In fact, we note that to obtain (36), (39), (42), and (45)
from (48) and (49), one has only to use the appropriate
expressions for £,{"(z"), B™, and b.

Note that this mathematical observation is meaningful
also from a physical point of view. In the initial formula-
tion of the problem, we started by considering two differ-
ent phrasings, namely, the aperture and the obstacle phras-
ing. Depending on the polarization of the incident plane
wave, each of these two phrasings has a different electro-
magnetic significance. For the obstacle phrasing, for in-
stance, if the incident plane wave is TE, with the electric
field parallel to the metallic strips, we always see the
grating as an “electrically large” discontinuity. This is true
even for very narrow metallic strips since they tend to
short-circuit the incident electric field; in this case, there-
fore, even physically small metal strips correspond to an
electrically large discontinuity. If the incident plane wave
is TM, however, the exciting electric field is perpendicular
to the metal strips, so that the grating of narrow strips
hardly sees the electric field and the effective discontinuity
becomes “electrically small.” Even for wider strips, the
reflected power produced by the strips for TM wave inci-
dence will be less than that expected on geometric grounds
alone, and certainly less than that for TE incidence. It is
therefore appropriate to characterize an obstacle disconti-
nuity as “electrically large” for TE incidence and “electri-
cally small” for TM incidence. For the other phrasing (the
aperture phrasing) the reverse is true: a TE excitation sees
the grating as an electrically small discontinuity, while a
TM excitation sees the grating as an electrically large
discontinuity. For TE excitation, therefore, an aperture
that is small in size is at the same time physically small
and electrically small, while for TM excitation an aperture
that is physically small is seen as an electrically large
discontinuity. Of the two integral equations above, there-
fore, (48) corresponds physically to the “electrically large”
case and (49) to the “electrically small” case.

Both (48) and (49) are Fredholm integral equations of
the first kind with singular kernels. [n Part IT of this paper,
we present two approximate solution procedures, one for
each equation, that lead to very simple and accurate net-
work representations for the multimode grating on an
air—dielectric interface.

APPENDIX
THE VECTOR MODE FUNCTIONS

As a consequence of the unit cell approach, the phase
difference between opposite walls cn the equivalent wave-
guide that represents a unit cell is the same for either TE
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or TM excitation since it depends on the angle of inci-
dence. Therefore, apart from a change of direction, the
vector mode functions have the same form for both polar-
izations. As a result, we outline here only the derivation
for the TM case. For a more detailed mathematical deriva-
tion of this case, the reader is referred to [19].

It is well known that for any cross-section-invariant
structure under TM excitation, the vector mode functions
e, and h, can be derived from the scalar mode function
¢,(z) via the expressions

El
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m
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