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Multimode Network Description of a
Planar Periodic Metal-Strip Grating

at a Dielectric Interface—Part I:
Rigorous Network Formulations

MARCO GUGLIELMI AND ARTHUR A. OLINER, LIFE FELLOW, IEEE

Abstract —In Part I of this set of two papers, the problem of a plane

wave incident at an arbitrary angle on a metal-strip grating of arbitrary

period located at an air-dielectric interface is formulated rigorously in

terms of a pair of “static” integraf equations, from which new equivalent

multimode network descr$tions are derived. Both aperture and obstacle

approaches are treated, and both TE and TM polarizations are considered

explicitly. In Part 11 we present two approximate, but very simple and

accnrate, analytical sohrtions “of the relevant integral equations, which in

tom lead to simple and useftd multimode network descriptions of the

discontinuity. Several nnmerical comparisons are also presented between

the results obtained using these new simple networks and those from an

independent numerical reference solution. Excellent agreement is found

over a fairly large range of parameter values.

I. INTRODUCTION

o

NE OF THE problems in electromagnetic scattering

that has always attracted much attention is the scat-

tering of waves by various types of transmission gratings.

Starting with the work of Lord Rayleigh [1] and continuing

up to the present time, continual efforts have been made to

improve the understanding of this phenomenon. Within

this context, the objective of this paper is to present a set

of new multimode equivalent network representations for

the scattering by a transmission grating composed of a

zero-thickness, periodic metal-strip grating at a plane di-

electric interface of the type shown in Fig. 1.

For this scattering problem, rigorous solutions are avail-

able only for a self-reciprocal and symmetric structure
[2]-[4] (a/j= 1/2 and C~lj = cj’) in Fig. 1). Other asymp-

totically rigorous or approximate analyses [5]–[15] can also

be found, and some of the solutions do provide very

accurate numerical results. The equivalent network repre-

sentations that are available in the literature are far more
limited, however. When the grating is operated under

single-mode conditions, i.e., there is present only one re-
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Fig. 1. The structure under examination is a zero-thickness metal-strip

grating placed at a plane air-dielectric interface. The excitation is a
plane wave incident at an angle; both TE and TM polarizations are

considered. The ratio between the period p and the wavelength XO of
the incident plane wave is such that higher propagating modes (or

spectral orders) must be considered.

fleeted wave and only one transmitted wave, the solution

for the equivalent network in the Waveguide Handbook

[16] is valid for arbitrary incidence angle but only when

the same medium is present on both sides of the grating.

When the grating is placed at an air–dielectric interface,

equivalent network results are presented [17], [18] for the

special case of normal incidence only, and under single-

mode conditions. In these two papers [17], [18], compar-

isons are made with other solutions, and some errors in the

literature are identified. An equivalent network is also

available [19] in a restricted multimode case, when only

one higher mode is propagating, meaning that only a single
diffracted wave (or higher spectral order) is present on

each side in addition to the basic reflected and transmitted

waves. That solution is valid, furthermore, only when the

same medium is present on both sides; in addition, it is

given for TM incidence only, and only for the small-aper-

ture range (small spacing between grating strips).

In the present pair of papers we first present new

equivalent network representations of the metal-strip grat-

ing that can accommodate at the same time a different

medium on each side of the grating, arbitrary values of the
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Fig. 2. The original motivation for this work is the study of a class of +: a - A;?k x.—— —

leaky-wave antennas for which the discontinuity in Fig. 1 is a key

constituent. (The grating is here rotated through 90 °.)

Fig. 3. Following the unit cell viewpoint, the structure in Fig. 1 can be

decomposed into an infinite number cf “aperture” umt cells.
relative aperture size, arbitrary angles of incidence, and an

arbitrary number of higher modes. In this context, we

derive integral equations and new rigorous multimode
z
I\

network formulations that satisfy all these requirements.

“In Part II, we derive explicit small-argument solutions to

these integral equations which are in a particularly simple

56.

7
—,—

analytical form, and we. also obtain correspondingly sim-

plified equivalent networks. P d~ –
x

The principal advantage associated with the use of ●(2)/
equivalent network representations is that such a descrip- -L/ LL
tion of the grating can then be employed as a constituent

——

part of a variety of more complex structures, thereby

permitting greater insight into the performance properties
i

and simplifying the eventual design. Our original motiva-
Fig. 4. An alternative decomposition is the “obstacle” unit cell, ob-

tion was the study of a particular class of leaky-wave
tained by placing the origin of the coordinate system at the center of an

obstacle rather than an aDerture.

antennas (see Fig. 2) in which the grating on an air–dielec-

tric interface is seen to serve as a key structural con-

stituent.

In the following sections we present solutions that are

analytical and in network form which are obtained by

analyzing the discontinuity in Fig. 1. The presentation has

been divided, for the sake of clarity, into two parts. Part I

(this paper) is concerned with the mathematical formula-

tion of the problem for aperture and obstacle phrasings,

and for both TE and TM excitations, together with the

new formal multimode network representations of the

solutions. In Part 11 we derive small-obstacle and small-

aperture solutions for the relevant integral equations that

provide very simple and accurate network descriptions of

the discontinuity. In the final section of Part II, we also

present several numerical comparisons between the results

obtained by using the networks developed and those from

an independent numerical reference solution, showing the

accuracy and flexibility of these equivalent network de-

scriptions.

In Section II of this paper, we begin by laying some

foundations relating to our unit cell approach and to the

use of static characteristic impedances, which permit us to

employ simplified kernels in the resulting rigorous integral

equations and to obtain useful equivalent network repre-

sentations for the discontinuity. Two alternative ap-

proaches, an aperture approach and an obstacle approach,

are possible in the derivation of integral equations that

characterize the discontinuity, and the formulations corre-

sponding to these approaches are presented in Sections III

and IV, respectively. It is to be noted that the equivalent
networks developed from these formulations are somewhat

different from each other. Application to either TE or TM

excitation follows directly upon the insertion of the appro-

priate expression for the modal characteristic impedance.

Explicit expressions for each of the four cases, combining

aperture or obstacle formulations with TE or TM excita-

tion, are presented in Section V. It is also shown there that

of these four cases only two different types of integral

equation result; they are both Fredholm integral equations

of the first kind with singular kerrlels, but the kernels in

each are different. In Part II, explicit analytical “small-

argument” solutions are derived for each of these two

integral equations; they lead to very simple and accurate

network descriptions that are valid over a reasonably wide

range of parameter values.

II. BACKGROUND: THE UNIT CELL APPROACH AND

THE STATIC IMPEDANCE

The first step toward the solution of the scattering

problem posed by a plane wave incident from the left on

the structure in Fig. 1 is the recognition that due to its

periodicity and infinite extent the grating can be decom-

posed into an infinite sequence of identical unit cells. Two

such unit cells are of particular interest: one obtained by

placing the origin of the coordinate system at the center of

an aperture and the other at the center of an obstacle, as in

Figs, 3 and 4,

Following this viewpoint, we effectively reduce the open

scattering problem to a waveguide problem. In fact, the

unit cell itself is equivalent to a waveguide where the walls

are phase-shift walls whose properties depend on the angle
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of incidence of the incident plane wave. The advantages of @>

this viewpoint are that we can now use a modal decompo- ~07/
I I

sition of ‘the fields and that the results obtained from the

analysis will be naturally compatible with a network de-

scription of the phenomenon. A detailed derivation of the

vector mode functions e.(z) and h.(z) can be found in

[19], but a short summary is included herein the Appendix

for clarity.

Now that we have available a complete set of mode

functions, we can decompose the total transverse field

components in the form

Et(x,z) = ~ Vn(x)en(z) (1)

H,(x, z) = ‘~mInn. (2)

Cb
In addition to the modal decompositions in (1) and (2), Fig, 5, Following the aperture formulation, the solutlon to the scatter-

another important concept that we employ later is that of

static characteristic impedance. Depending on which polar-

ization we employ, from now on we will use the following

definitions: for TM modes,

1
(m)

UCoer tito+)p
_ . y(ti) .

Jk:m;=+J
n#O

z-~) ‘,s lim , 27rln\ ‘

(3)

and for TE modes,

1 (m)
‘POPr . woP!m)P

z::) . — .
y;:) lim ,~+ok:m;=+~ 27rlnl ‘

n#O

(4)

where the subscript s stands for “static” and the positive

sign is a direct consequence of the time dependence

exp [jot]chosen and suppressed. The superscript (m) sig-

nifies either region (1) or (2) in Fig. 1, and in (3) and (4)

we recognize that

consistent with (A5) and (All) of the Appendix.

As a consequence of the above definitions, we are now

ready to introduce two separate formulations: one for the

aperture approach and another for the obstacle approach.

The distinction between TE and TM excitation is made

later via the substitution of the proper expression for the

static characteristic impedance or admittance.

III. APERTURE FORMULATION

Using the field decomposition in (2) and imposing the

continuity of the total transverse magnetic field at the

aperture in Fig. 3, we have

+Cc +02

~ I;’)(o) hn(z)- ~ I;’)(o) hn(z) =0 (5)

where ~~m) is the total modal current, and the superscripts

(1) and (2) refer to x <0 and x >0, respectively. Note that
since (5) represents the continuity of the total transverse

~ng problem pos~d by t-he structure in Fig. 1 can be phrased in terms of
an equwalent shunt network coupling all of the higher modes excited

by the grating.

magnetic field, it also contains the exciting plane wave, as

a part of the n = O component of the first summation.

Therefore, no explicit reference needs to be made with

respect to the excitation.

From (5) we will now develop a rigorous integral equa-

tion whose kernel consists of a sum of static, rather than

dynamic, modes. This procedure facilitates the solution of

the integral equation and also leads to a very simple and

useful network formulation.

Following the development in the Waueguide Handbook

[20], a key step toward the formulation of such a “static”

integral equation is to add the terms

to both sides of (5), obtaining

where the static characteristic admittance terms are de-

fined in (3) and (4). The left-hand side of (7) suggests the

very useful current redefinition

~= (1$) - 1~2))

{

forn=O

“ (~(l) - 1;’))+ p’ (y(l) + y(a)) forn#O
(8)

n n n,s n,s

which leads to the equivalent network interpretation shown

in Fig. 5, where the modal voltages Vm are given by

The above analytical expressions are equivalent to those

developed in the Waueguide Handbook [20], but the net-

work representation for them presented in Fig. 5 is new,
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and, as we shall see, is very useful and practical in its

reduced form given in Part II.

It is now appropriate to recall the transform relation

between the voltage V~ of the mth mode and the electric

field E in the aperture, namely,

Vm= ( (xox E). h:(z’)dz’ (lo)
“ aP

where the star means complex conjugate. Next, we substi-

tute (10) into (7) taking (8) into account and obtaining,

after a simple manipulation,

m#O

Equation (11) is the fundamental integral equation we are

seeking; note that the kernel is simplified, because it

consists of a sum of static terms, but that the “incident”

excitation is now more complicated.

Due to the linearity of the problem, however, a more

useful equation can be obtained by expanding the un-

known aperture magnetic current XOX E(z’) into a sum of

partial magnetic currents ikf~(z’), defined by

(XOXE(Z’)) ‘~,(z’) ~ ~~n(z’) (12)

where A 0( z’) is an appropriate vector function to be

defined later. Sub~ituting (12) into (11) and comparing

like coefficients of In, we finally obtain the following set of

partial integral equations:

hn(z) =J Mn(z’)zlo(z’)
w

m#O

where n=O, +1, ~2, ..”.

It is important to note that, although (13) has a kernel

composed of static terms, it indeed represents a rigorous

formulation of the problem under investigation.

To conclude the network phrasing of the problem, let us

now substitute (12) into (10) and obtain, after inverting the

order of summation and integration,

Vm = ‘~m~n/ikfn(Z’)/io(Z’) -h;(Z’) dz’. (14)
~=—~ aP

Comparing (14) with (9), we finally obtain

where Z~,. is the generic element of the impedance matrix

description introduced earlier (see Fig. 5 and (9)). Equa-

tion (15), together with (13) and the network in Fig. 5,

constitutes the formal solution of the aperture phrasing of

the scattering problem under investigation.

IV. OBSTACLE FORMULATION

To phrase the problem in terms of the obstacle rather

than the aperture, we start by imposing the condition that

the tangential electric field components vanish on both

sides of the obstacle in Fig. 4. We thus obtain

E}l) = O = ‘~~ ~(l)e~ ( Z) forx=O- (16)
~=—~

E}z) = () = ‘~~ ~(2)e~( Z) forx=O+. (17)
~=—*

Then, using the static characteristic; impedance previously

defined in (3) and (4), we add to both sides of (16) and

(17), respectively, the terms

~ ZJ~~IJ1)en(z) (18)
n+o

- ~ Zf~I~)e,,(z) (19)
n#o

obtaining

Y L(’)en(z) + X z~~~~~)en(z) = X -Z~~{~~’)en(z)
~=—~ n#o n+o

(20)

~ fi(2)en(z) - ~ ZJ~~IJ2)en( z)
~=—~ n#o

= - ~ Z~\IJ2)en(z). (21)
~~ko

To proceed in setting up the relevant integral equation, let

us now multiply (20) and (21) by C~l) and CJ2), respec-

tively, where the constant C}m) is defined as follows:

(
~:m) for TM modes

.j-

qnl) = 1

for TE modes.
(22)

ll.m)

The subscript r in (22) stands for” relative,”

2 for xs O or x >0, respectively. Adding

expressions, we obtain

andm=lor

the resulting

1:2)) er,( z )
~=—* n+O

= ~ Gn(I~l)-I~2))en(z) (23)

n+O

where we have taken into account the fact that the discon-

tinuity is purely transverse, so that

and the coefficient G. is defined according to

(25)
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Fig. 6. An afternative approach is the obstacle formulation that leads to
a network description of the scattering problem that can be viewed as
the “dud” of the one shown in Fig. 5.

Finally, multiplying (23) by l/(C~l) + Cjz)) we obtain the

useful expression

In a fashion similar to what we did for the aperture case,

let us now redefine voltages and currents according to

~= p) – @
n? Fz=o, +1, f2, ..- (27)

forn=(l

Vn=

\

Gn
vn+~ forn#O

(28)

C:u + C(2)
r

and note that the above definitions lead to the network

description of the discontinuity shown in Fig. 6, where the

currents ~ are given by

(29)
fl=-~

To proceed, let us employ the well-known transform

relation between the current 1~ of the m th mode and a
magnetic field H

lm=J(-xo XH)”e~(z’)dz’ (30)
D

where the domain D is the cross section of the unit cell,

and then substitute (30) into (26), using the definitions

introduced in (27) and (28), We then find

-~b,tac,e[-~ox(~:’’ -~:”)l~ Pnen(z) -
~=.~

“z ‘m e (z)eJ(z’) dz’ (31)
cc) + c@) m

m#o r r

where we have taken into account the continuity of the

transverse magnetic field in the aperture. Remembering

again that linearity holds, it is now appropriate to intro-

duce the function N.(z’) according to

- ~. x(@- H,(2))= B,(Z’) s T,N.(z’) (32)t

where the vector function B. is a suitable function to be

defined at a later stage. Substituting (32) into (31) and

comparing like coefficients of ~., we finally deduce the

following set of partial integral equations:

en(z) =J Nn(z’)llo(z’)
obstacle

“~;. C(,,:c(,)e)n(z)e:(z’)dz’ (33)
r r

where n=O, +1, +2,.... Note that, as with (13), (33) has

a static kernel and at the same time represents a rigorous

formulation of the problem under investigation.

To complete the network phrasing of the problem, let us

combine (32) and (30) to determine ~ as

Finally, comparing (34) with (29) we have

Y=m,n /
Nn(z’)Bo(z’) .e~(z’)dz’ (35)

obstacle

where Y., . is the generic element of the admittance matrix

description introduced earlier in Fig. 6 together with (29).

Equation (35), together with equation (33) and the network

in Fig. 6, constitutes the formal solution of the obstacle

formulation of the original scattering problem.

V. EXPLICIT EXPRESSIONS FORTE AND TM

INCIDENT WAVES

Let us first summarize the general basic equations de-

rived in the previous sections. For the aperture formulation,

the partial integral equation that must be solved for the

partial aperture magnetic current M. is given by (13), and

the expression for the impedance matrix element Z~,. in

terms of M. by (15). The only other elements in the

equivalent network formulation shown in Fig. 5 are the

static characteristic admittances that are defined in (3)

and (4).
In the obstacle formulation, the partial integral equation

for quantity NH appears as (33), and the expression for the

admittance matrix element Y~,. in terms of N. is given by

(35), The other elements in the equivalent network formu-

lation shown in Fig. 6 are defined in (22) and (25).

To obtain explicit expressions for TE and TM incident

polarizations, we must utilize relations (3) and (4) for the

static characteristic impedances and expressions (A9) and

(A1O) for the vector mode functions from the Appendix

and substitute them into the equations mentioned above.

Four specific cases are possible, combining aperture or

obstacle formulations with TM or TE excitation.
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Case 1: TM Excitation and Aperture Formulation the types

e-J’2n”/p’z=/%(4
aP

%,n=]Ml(oeJ(2m”/p)z’dz’ (37)
w

]kz,~z’

Ao(z’). ‘Yoe =1.
6

(38)

Case 2: TM Excitation and Obstacle Formulation

y~,.=~fl.(z’)e’(’m”p)’’dz’
jkz,Oz’

Bo(z’) . ‘oe~ =1.

(40)

(41)

Case 3: TE Excitation and Aperture Formulation

e-’(2n”’p)’=~pM(z’) &o&(;+;)
. lmle-J(2m~/P)(z-z’) dz, (42)

%..=JJ’f.(z’)e’(’m”/p)z’dz’ (43)
w

]k=,Oz’

Ao(z’). ‘oe~ =1. (44)

Case 4: TE Excitation and Obstacle Formulation

y~,.=~bN,(z’)e’(2mn/p)z’dz’(46)

In fact, we note that to obtain (36), (39), (42), and (45)

from (48) and (49), one has only to use the appropriate

expressions for ~J~)(z’), B(n), and b.

Note that this mathematical observation is meaningful

also from a physical point of view, In the initial formula-

tion of the problem, we started by considering two differ-

ent phrasings, namely, the aperture and the obstacle phras-

ing. Depending on the polarization of the incident plane

wave, each of these two phrasings has a different electro-

magnetic significance. For the obstacle phrasing, for in-

stance, if the incident plane wave is TE, with the electric

field parallel to the metallic strips, we always see the

grating as an “electrically large” discontinuity. This is true

even for very narrow metallic strips since they tend to

short-circuit the incident electric field; in this case, there-

fore, even physically small metal strips correspond to an

electrically large discontinuity y. If the incident plane wave

is TM, however, the exciting electric field is perpendicular

to the metal strips, so that the grating of narrow strips

hardly sees the electric field and the effective discontinuity

becomes “electrically small.” Even for wider strips, the

reflected power produced by the strips for TM wave inci-

dence will be less than that expected on geometric grounds

alone, and certainly less than that for TE incidence. It is

therefore appropriate to characterize an obstacle disconti-

nuity as “electrically large” for TE incidence and “electri-

cally small” for TM incidence. For the other phrasing (the

aperture phrasing) the reverse is true: a TE excitation sees

the grating as an electrically small discontinuity, while a

TM excitation sees the grating as an electrically large

discontinuity. For TE excitation, therefore, an aperture

that is small in size is at the same time physically small

and electrically small, while for TM excitation an aperture

that is physically small is seen m an electrically large

discontinuity. Of the two integral {equations above, there-

fore, (48) corresponds physically to the “electrically large”

case and (49) to the “electrically small” case.

Both (48) and (49) are Fredhohn integral equations of

the first kind with singular kernels. [n Part II of this paper,

we present two approximate solution procedures, one for

each equation, that lead to very simple and accurate net-

work representations for the multimode grating on an

air-dielectric interface.

]k:,Oz’ APPENDIX

Bo(z’) . ‘oer =1. (47) THE VECTOR MODE FIJNCTIONS
VP

As a consequence of the unit cell approach, the phase
In conclusion, the original scattering problem has been difference between opposite walls cm the equivalent wave-

reduced to the solution of two partial integral equations of guide that represents a unit cell is the same for either TE
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or TM excitation since it depends on the angle of inci-

dence. Therefore, apart from a change of direction, the

vector mode functions have the same form for both polar-

izations. As a result, we outline here only the derivation

for the TM case. For a more detailed mathematical deriva-

tion of this case, the reader is referred to [19].

It is well known that for any cross-section-invariant

structure under TM excitation, the vector mode functions

e. and h ~ can be derived from the scalar mode function

+.(z) via the expressions

–V*%(Z)
en(z) = ~

z,n

(Al)

hn(z) =xoxen(z) (A2)

where k, ~ is the wavenumber in the transverse direction

(z direction in this case; there is no variation in the y

direction). It can be shown that the scalar mode function

Y.(z) must satisfy the equation

(@+k:,n)%(z)=O (A3)

together with the proper boundary conditions. Due to the

presence of the grating, the solution of (A3) can be written

in the form

+.(z) = e-’~’O~~(z) (A4)

where

kZ,O= kOsintl (A5)

O being the angle of incidence measured from the normal

and

fn(z+p)=fn(z) (A6)

where p is the grating period. Introducing (A4), (A5), and

(A6) into (A3), we obtain

+.(z) = Ae-j~=,0ze-j(2’m/~)~ (A7)

where, to evaluate the constant A, we employ the normal-

ization condition

Jp/2%(of+:(z’)~z’=1.
– p/2

(AS)

Finally, for the vector mode functions, we obtain the

expressions

e–jk,,.z
en(z) =zo—

G
e–lk,,.z

hn(z)=–yo—
JF

where the wavenumber k,, ~ is given by

k =kOsin6+2nr/p.
Z,n
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